

### **Summary Report**

# 1<sup>st</sup> Annual AI-Cambodia Forum: "Human Intelligence in the Augmented Era"

Raintree - The Canopy Phnom Penh November 8<sup>th</sup> 2018

### **Event Coordinator**

Mr. Chhem Siriwat

### **Conveners**

Dr. Chhem Rethy, Executive Director, CDRI Dr. Hul Seingheng, Director of Research and Innovation Center, ITC

### **Organizing Committee**

Dr. Khieng Sothy, Senior Research Fellow, CDRI Dr. Liv Yi, Researcher Lecturer, ITC Dr. Srang Sarot, Head of Mechatronics Research Unit, ITC

Special thanks to Dr. Bong Angkeara, Research Associate, CDRI

### **Sponsored by:**







### **Table of Contents**

| 1. Introduction | on                                                                           |
|-----------------|------------------------------------------------------------------------------|
| 1.1 O           | bjective3                                                                    |
| 1.2 E           | xpected Output3                                                              |
| 2. Presentation | o <b>n</b>                                                                   |
| A. Sch          | nolar Presentations:                                                         |
| 1               | Disruptive Technology Shaping Our Future by Dr. Sawal Hamid Md Ali,          |
|                 | Associate Professor, Department of Electrical, Electronics and Systems       |
|                 | Engineering, Universiti Kebangsaan                                           |
|                 | Malaysia3                                                                    |
| 2               | Intelligent Mechatronics by Dr. Srang Sarot, Head of Mechatronics Research   |
|                 | Unit, Institute of Technology of Cambodia                                    |
| B. Ent          | repreneur Presentations:                                                     |
| 3               | Building AI applications from Cambodia by Mr. De Vos Andries, CEO, Slash     |
|                 | Foundry                                                                      |
| 4               | Landmines, Bombs and Robotics by Mr. Yim Richard, CEO, Demine                |
|                 | Robotics4                                                                    |
| 3. Summary      | of the Discussions                                                           |
| Proble          | em #1: How do we design AI-driven curriculums to build and retain talent in  |
|                 | odia?4                                                                       |
|                 | em #2: How do we maximize industrial productivity, while minimizing negative |
|                 | ts on the existing workforce?4                                               |
|                 | ndations5                                                                    |
| Appendix        |                                                                              |
|                 | ntations                                                                     |
|                 | n Program                                                                    |
|                 | f Participants                                                               |
|                 | 1                                                                            |

#### 1. Introduction

The 1<sup>st</sup> Annual AI-Cambodia Forum: "Human Intelligence in the Augmented Era" was held on Thursday, November 8<sup>th</sup> 2018 at Raintree - the Canopy, Phnom Penh, Cambodia. The forum was sponsored by Cambodia Development Resource Institute (CDRI), ISI Group, and Institute of Technology of Cambodia (ITC). The report summarizes key points of the forum objectives, expected outcomes, scholar and entrepreneur presentations, discussions, and recommendations. The forum was attended by 38 participants from key technical institutions and private sectors. These included executive directors, senior managers, scholars, entrepreneurs, and students. Based on the participants' feedback, there were generally positive responses that the knowledge gained from participating in the forum met their expectations and more.

#### 1.1 Objectives:

The main purpose of the 1<sup>st</sup> Annual AI-Cambodia Forum: "Human Intelligence in the Augmented Era" was to provide an innovative platform for scholars and entrepreneurs to exchange ideas, creating opportunities for potential collaboration.

#### 1.2 Expected Outcome:

The expected outputs of the forum are: (1) explore AI landscape of Cambodia, (2) examine roles of digital technology in society, and (3) foster industry-university linkages.

#### 2. Presentations:

#### A. Scholar Presentations

The first presentation made by Dr. Sawal Hamid Md Ali, Associate Professor, Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia was on "Disruptive Technology Shaping Our Future". He explained the trends in disruptive technology i.e. Internet of Things, Augmented Reality, Blockchain, Artificial Intelligence, 3D printing, drones, robotics, etc. Then, he introduced three key project examples, including the Automatic Calorie Estimation System (Smart Glass), Human Emotion Recognition System (Smart Car), Smart and Sustainable Campus (Smart City). He further explained the problem statement, objectives of the project, modeling, and social implications for each project.

The second presentation by Dr. Srang Sarot, Head of Mechatronics Research Unit, Institute of Technology of Cambodia was on "Intelligent Mechatronics". Dr. Sarot explained the key definition of intelligent mechatronics (mechatronics + artificial intelligence). Mechatronics relates to automation, robotics, control system, system design, and system modeling; whereas artificial intelligence includes search and optimization, machine learning, deep learning, reinforcement learning, and identification and estimation. Concurrently, he displayed videos related to his projects on mechatronic systems, including SCARA Robot, 4DOF Robot Manipulator, Dual Axis Solar Tracker, drone: Hexacopter, and Mobile Robot using Omni Wheel. For instance, SCARA Robot is used for moving parts, drilling holes, cutting and metal assembly. At the end of his presentation, he expressed interest for future research, including 5-DOF and 6-DOF Robot Manipulator (for multipurpose use), 7-DOF Robot Manipulator (like human arm), 4-legged and biped robots (walking robots), and integrating AI with robots, together with potential stakeholders.

#### **B.** Entrepreneur Presentations

The third presentation delivered by Mr. De Vos Andries, CEO, Slash Foundry was on "Building AI Applications from Cambodia". In his presentation, he focused on two key parts on building AI applications in Cambodia and on developing AI talents in Cambodia. In the first part, he briefed key projects, including identity match, news categories, flood prediction, fraud detection,

city management (smart city), and Khmer Chatbot. He further explained two key challenges in starting with AI in Cambodia: (1) access to data and (2) access to talent.

The fourth presentation made by Mr. Yim Richard, CEO, Demine Robotics was on "Landmines, Bombs and Robotics". He introduced a number of issues related to landmines, as well as their clearing cost. For example, there are 60 million landmines in 70 countries. From the landmine monitor report, it costs \$900-\$1,000 per landmine to clear. He further explained the 3 key functions of his demining robot: (1) detect, (2) retrieve, and (3) destroy. The uniqueness of his robot is its small size, strength, intelligence, machine efficiency, machine sensitivity, and data collection.

### 3. Summary of the Discussions:

- How can we frame our perspectives of AI? How can we educate and facilitate the young generations to respond to the changes of society in terms of AI? How can we create the awareness of AI in the business sectors?
  - Raise awareness between key stakeholders, including the government, private, and manufacturing sectors.
  - o Develop national strategies and roadmaps.
  - o Ensure the understanding of AI services between supply and demand.
  - Provide AI training and education for the young generations through practical experiences and e-learning.
  - o Address and minimize false negative perceptions about AI in society.
  - Learn and develop our understanding of AI by looking at international role models.
  - Develop a social engineering system.
  - o Gain support from the government and key stakeholders.
- Problem #1: How do we design AI-driven curriculums to build and retain talent in Cambodia?
  - o Develop practical curriculums in English, involving industrial partners.
  - Provide business opportunities and support for young Cambodians in Computer Science/Engineering.
  - o Develop SWOT curriculums, based on annual AI-Cambodia Forum findings.
  - o Build capacity and resources for AI academics, including teachers and facilities.
  - o Develop partnerships between universities and industrial partners.
  - o Provide a space for innovative learning and teaching, i.e. computer labs.
  - o Build trust in the process of AI and its value in the business sectors.
- Problem #2: How do we maximize industrial productivity, while minimizing negative impacts on the existing workforce?
  - Develop talent strategies, including more applicable programs on AI and create new opportunities for young entrepreneurs.
  - o Develop new specialized workforces to meet the current market's demands.
  - Move from manufacturing to technical services, government incentive for industrial transformation.
  - o Retain and upgrade the existing workforces.
  - o Provide a space for open data to support the business sector.
  - Gain support from government in terms of incentive programs to support local AI entrepreneurs.
  - o Collaborate with foreign stakeholders i.e. internationalization of the industry.

### 4. Recommendations

The recommendations from the forum may be summarized as follows:

- ➤ Build innovative technology center i.e. AI center in Cambodia. The government should ensure that resources and technical support are available for key stakeholders to integrate AI into the national strategy plan. Committing resources to building capacity and confidence could ensure articulation of their concerns, while empowering them to participate fully in AI industries.
- Transform academic research into possible business plans to respond to the market's demands. Future collaborations between AI industries and private sectors should consider the following points:
  - Proof of concept (talent and funding)
  - Prototyping (funding and experiences)
  - Startup (business incubator)
- ➤ Develop mechanisms for improving future collaboration between AI practical sector and stakeholders, including access to AI opportunities in Cambodia. These include formulation, implementation and monitoring of participation at all levels.
- ➤ Develop a roadmap for AI, to educate young Cambodians on its value to boost the country's growth in the future.

### **APPENDIX**

# Global Historical Roots of Al

Dr CHHEM Rethy

# King Mu of Zhou 950BC



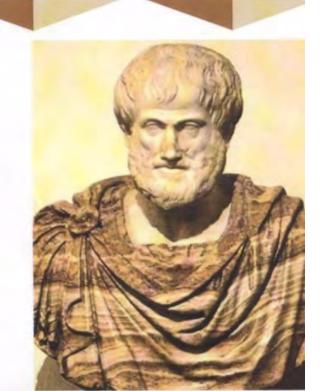


"It walked with rapid strides, moving its head up and down, so that anyone would have taken it for a live human being. The artificer touched its chin, and it began singing, perfectly in tune. He touched its hand, and it started posturing, keeping perfect time. It went through any number of movements that fancy might happen to dictate. The King, looking on with his favorite concubine and the other inmates of his harem, could hardly persuade himself that it was not real."

# Aristotle 350BC

# Syllogism

Aristotle used every form of deductive reasoning;


Syllogism is a form of deductive reasoning;

Therefore Aristotle used syllogism.

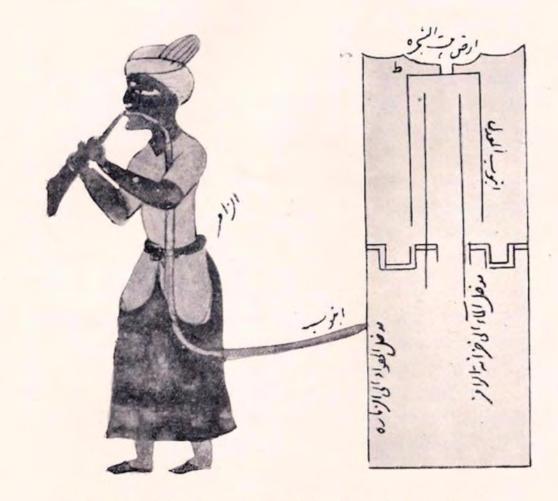
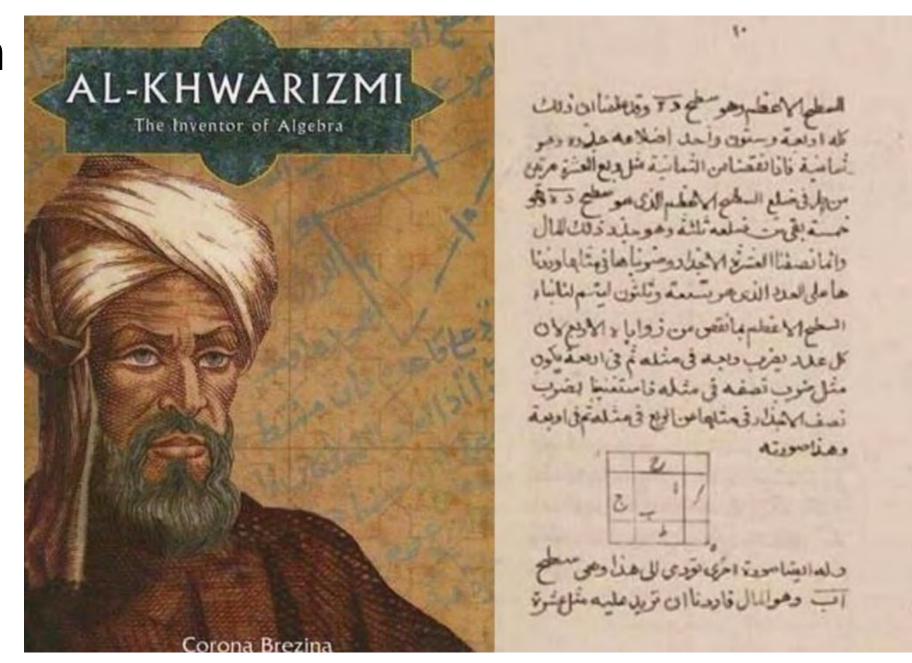
Reason

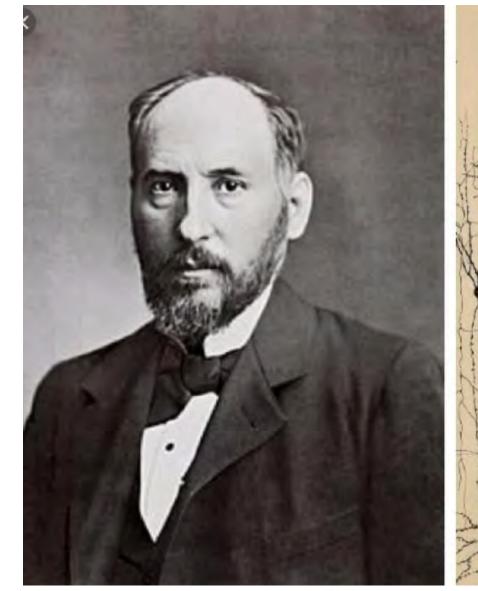
It

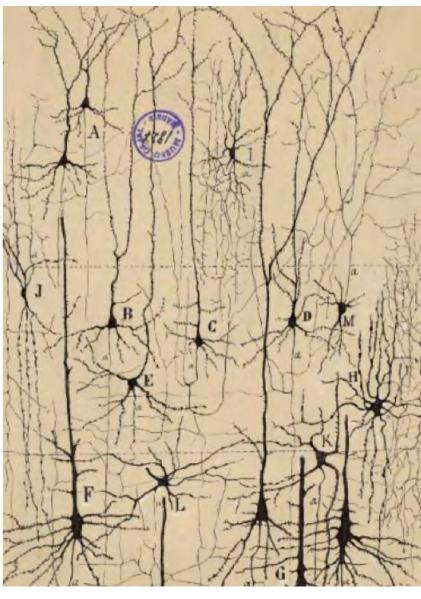
Out!



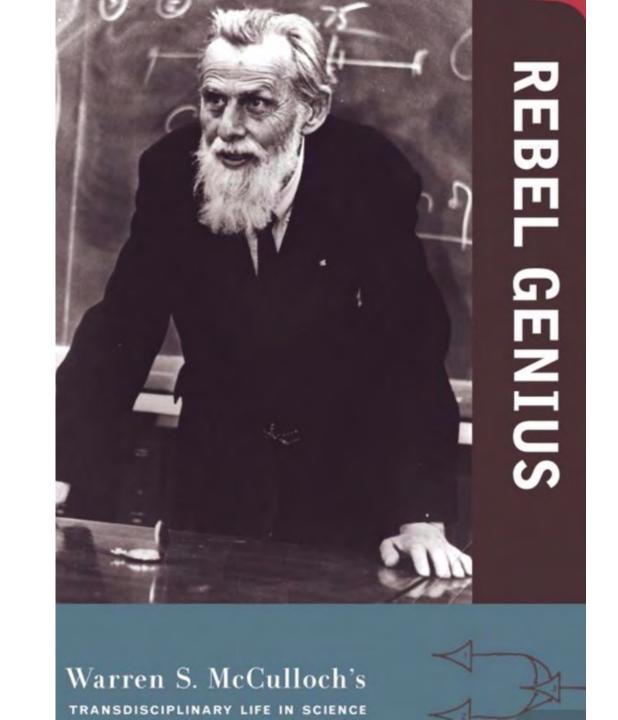
### Automata Allah 9<sup>th</sup> CE

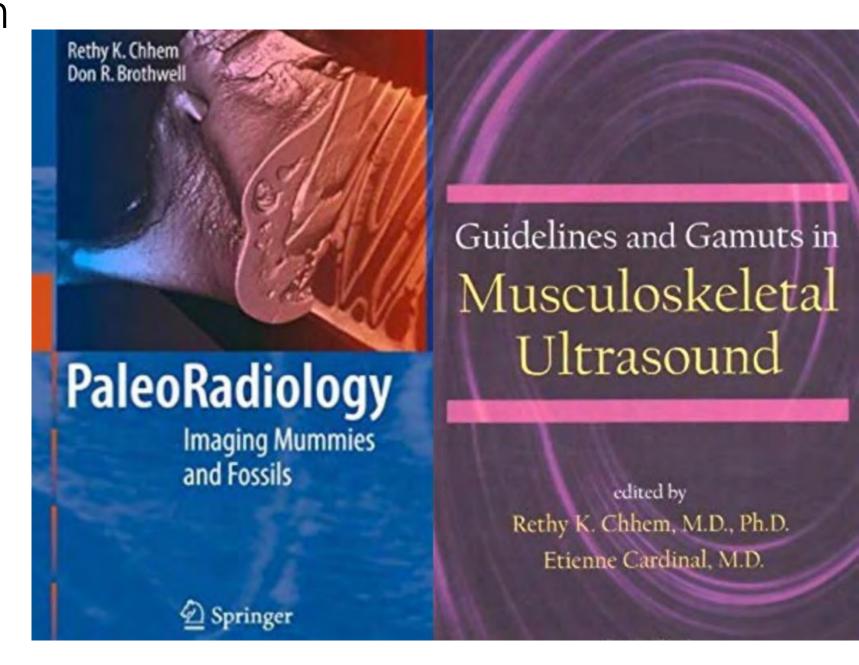


PLATE 1. THE ARCHIMEDES AUTOMATIC WIND INSTRUMENTALIST.


British Museum MS., Or. Add. 23391.

# Compendium 820CE




# Santiago Cajal Nobel 1906






# First Artificial Neuron 1943



Pattern Recognition 1998 Branch of ML



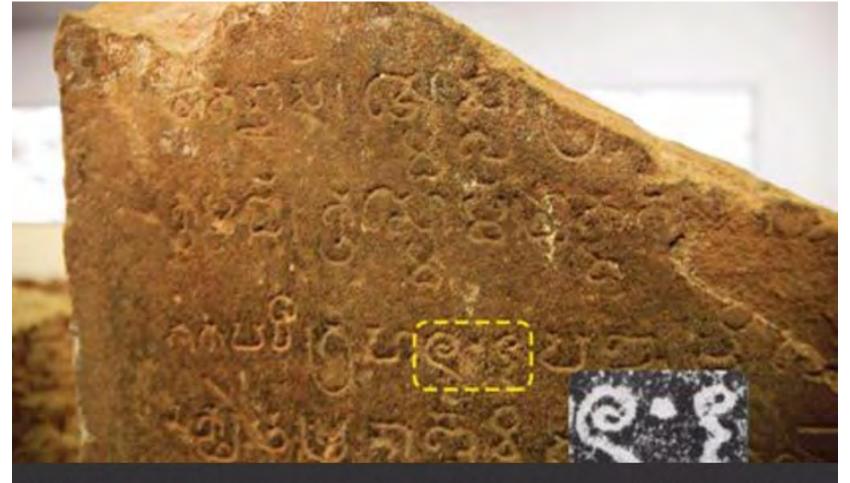
# Fuzzy Logic 2007

### Chemical Product and Process Modeling

Volume 2, Issue 3

2007

Article 6


### Crisp and Fuzzy Optimisation Approaches for Water Network Retrofit

Seingheng Hul\*

Denny K. S. Ng<sup>†</sup>

Raymond R. Tan<sup>‡</sup>

# Oldest Version of Zero? 2015



This inscription, written in Old Khmer, reads "The Caka era reached year 605 on the fifth day of the waning moon." The dot (at right) is now recognized as the oldest known version of our zero. (Amir Aczel)

Intelligent Mechatronics



\*picture credits available upon request



# Disruptive Technology Shaping Our Future

Sawal Hamid Md Ali Universiti Kebangsaan Malaysia

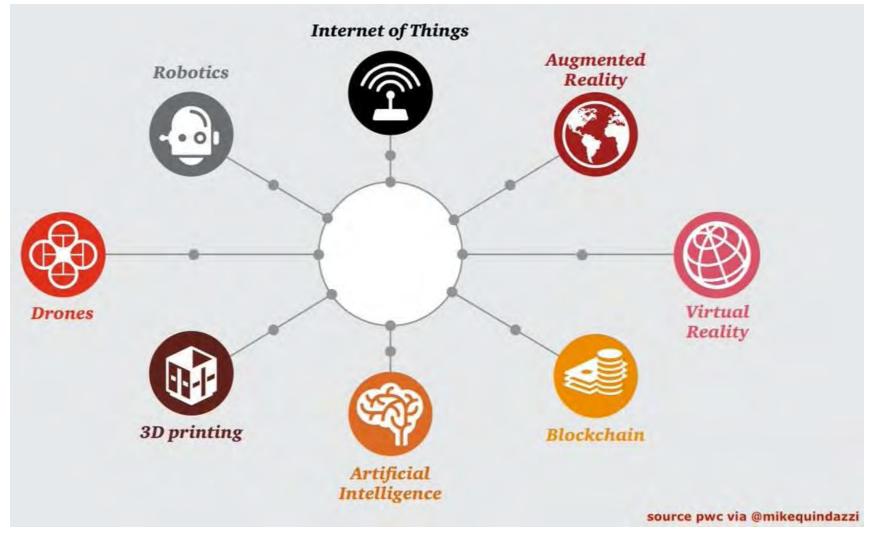
8<sup>th</sup> November 2018

### Outline

- Trends in disruptive technology
- Project examples
  - Automatic Calorie Estimation System Smart Glass
  - Human Emotion Recognition System Smart Car
  - Smart and Sustainable Campus Smart City

"Change is the only constant"




## Disruptive Technology

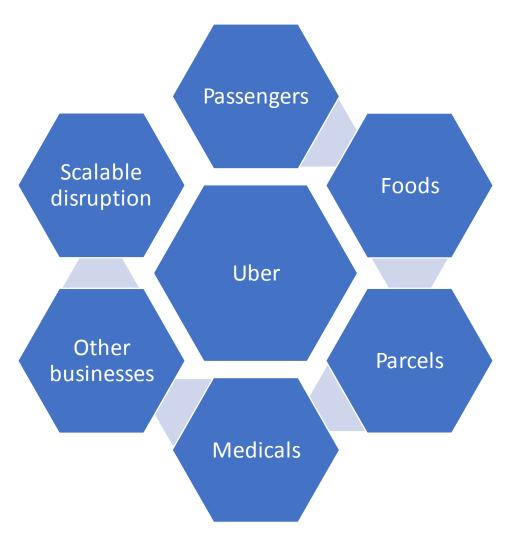
"Some people don't like change, but you need to embrace change if the alternative is disaster" - ELON MUSK

(Tesla Motors; PayPal)



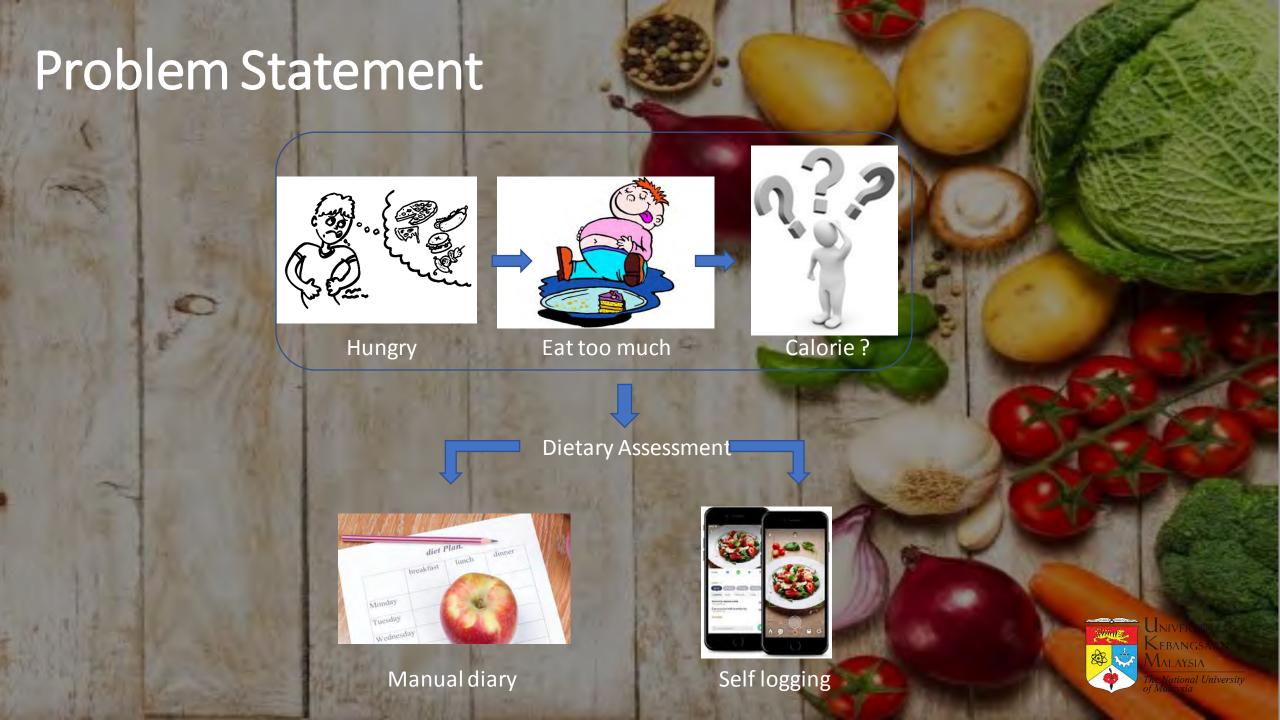
# Disruptive Technology






# Scalable Disruption

### Remember Kodak?


- Too slow to realize digital switch
- The collapse of film

What about UPS? Fedex? Or other delivery services?







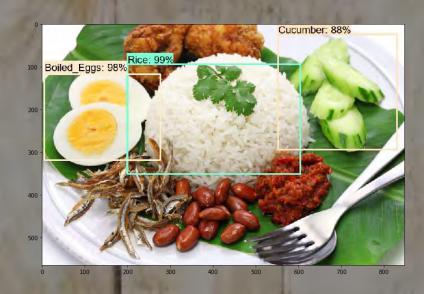


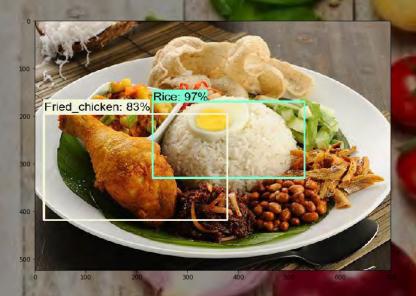




A new dataset for Malaysian local foods. 5800 food images from 11

categories.


| OR ALL                        |             |
|-------------------------------|-------------|
| Plate/Food Name               | <u>Numb</u> |
| Nasi Lemak                    | 170         |
| Nasi Goreng (Fried<br>Rice)   | 284         |
| Mee Goreng (Fried<br>Noodles) | 295         |
| Curry Puffs                   | 514         |
| Cucumber                      | 229         |
| Tomatoes                      | 171         |
| Chili Pepper                  | 332         |
| White Rice                    | 141         |
| Fried Chicken                 | 517         |
| Boiled Eggs                   | 122         |
| Fried Eggs                    | 307         |
|                               |             |








- Based on deep learning algorithm (CNN)
- Using TensorFlow algorithm developed by Google
- Output: Object detection areas and identification







# Automatic Food Recognition and Calorie Estimation







Smart Glass Prototype
- FoodEye



App under development



# Project Example

# Intelligent Safe Driving System based on Human Emotion Recognition, Profiling and Prediction

## Cause of death

|                            | MALAYSIA TOTAL DEATHS BY CAUSE PERCENT TOP 50 CAUSES |       |                             |        |      |  |  |  |  |
|----------------------------|------------------------------------------------------|-------|-----------------------------|--------|------|--|--|--|--|
|                            | Deaths                                               | %     |                             | Deaths | %    |  |  |  |  |
| 1. Coronary Heart Disease  | 29,363                                               | 23.10 | 26. Drownings               | 928    | 0.73 |  |  |  |  |
| 2. Stroke                  | 15,497                                               | 12.19 | 27. Stomach Cancer          | 863    | 89.0 |  |  |  |  |
| 3. Influenza and Pneumonia | 11,773                                               | 9.26  | 28, Other Neoplasms         | 794    | 0.62 |  |  |  |  |
| Road Traffic Accidents     | 6,813                                                | 5.36  | 29. Suicide                 | 772    | 0.61 |  |  |  |  |
| 5. Lung Disease            | 6,797                                                | 5.35  | 30. Pancreas Cancer         | 769    | 0.60 |  |  |  |  |
| 6. HIV/AIDS                | 4,848                                                | 3.81  | 31. Fires                   | 744    | 0.59 |  |  |  |  |
| 7. Diabetes Mellitus       | 4,760                                                | 3.74  | 32. Violence                | 650    | 0.51 |  |  |  |  |
| 8. Lung Cancers            | 4,088                                                | 3.22  | 33. Peptic Ulcer Disease    | 648    | 0.51 |  |  |  |  |
| 9. Other Injuries          | 3,804                                                | 2.99  | 34. Ovary Cancer            | 638    | 0.50 |  |  |  |  |
| 10. Kidney Disease         | 2,768                                                | 2.18  | 35. Meningitis              | 625    | 0.49 |  |  |  |  |
| 11. Breast Cancer          | 2,535                                                | 1.99  | 36. Skin Disease            | 619    | 0.49 |  |  |  |  |
| 12. Colon-Rectum Cancers   | 2,278                                                | 1.79  | 37. Cervical Cancer         | 614    | 0.48 |  |  |  |  |
| 13. Liver Cancer           | 1,733                                                | 1.36  | 38. Rheumatic Heart Disease | 501    | 0.39 |  |  |  |  |
| 14. Hypertension           | 1,684                                                | 1.32  | 39. Prostate Cancer         | 496    | 0.39 |  |  |  |  |
| 15. Asthma                 | 1,642                                                | 1.29  | 40. Parkinson's Disease     | 464    | 0.36 |  |  |  |  |
| 16. Falls                  | 1,611                                                | 1.27  | 41. Appendicitis            | 387    | 0.30 |  |  |  |  |
| 17. Tuberculosis           | 1,554                                                | 1.22  | 42. Birth Trauma            | 387    | 0.30 |  |  |  |  |
| 18. Inflammatory/Heart     | 1,444                                                | 1.14  | 43. Oesophagus Cancer       | 325    | 0.26 |  |  |  |  |
| 19. Liver Disease          | 1,361                                                | 1.07  | 44. Hepatitis B             | 315    | 0.25 |  |  |  |  |
| 20. Congenital Anomalies   | 1,360                                                | 1.07  | 45. Diarrhoeal diseases     | 312    | 0.25 |  |  |  |  |
| 21. Lymphomas              | 1,119                                                | 0.88  | 46. Bladder Cancer          | 261    | 0.21 |  |  |  |  |
| 22. Leukemia               | 1,073                                                | 0.84  | 47. Epilepsy                | 229    | 0.18 |  |  |  |  |
| 23. Oral Cancer            | 1,060                                                | 0.83  | 48. Uterin Cancer           | 219    | 0.17 |  |  |  |  |
| 24. Endocrine Disorders    | 1,044                                                | 0.82  | 49. Poisonings              | 196    | 0.15 |  |  |  |  |
| 25. Low Birth Weight       | 1,033                                                | 0.81  | 50. Alcohol                 | 173    | 0.14 |  |  |  |  |



### Laboratory proof of concept

- In-Lab experiment (Audio Visual stimuli)
- Simulator based experiment (Driving game)





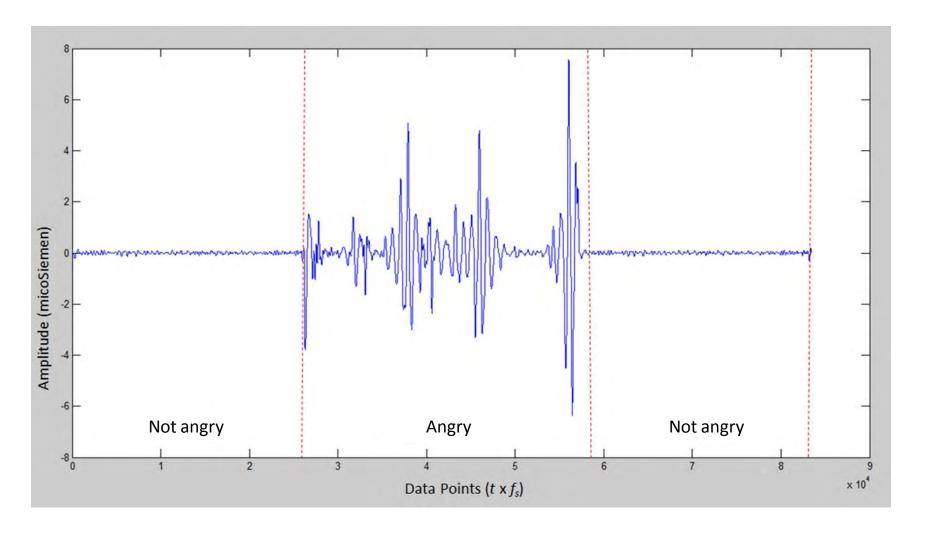
### Laboratory proof of concept

Experiment protocol

| IN SECOND | 180            | 25             | 40               | 25             | 70           | 25             | 314                |
|-----------|----------------|----------------|------------------|----------------|--------------|----------------|--------------------|
| START     | Neutral        | Cooling Period | Нарру            | Cooling Period | Нарру        | Cooling Period | Нарру              |
|           | Digital Images | Black Screen   | 8 Digital Images | Black Screen   | 1 Video Clip | Black Screen   | 1 Video Audio Clip |
|           | Soothing Music |                |                  |                |              |                |                    |

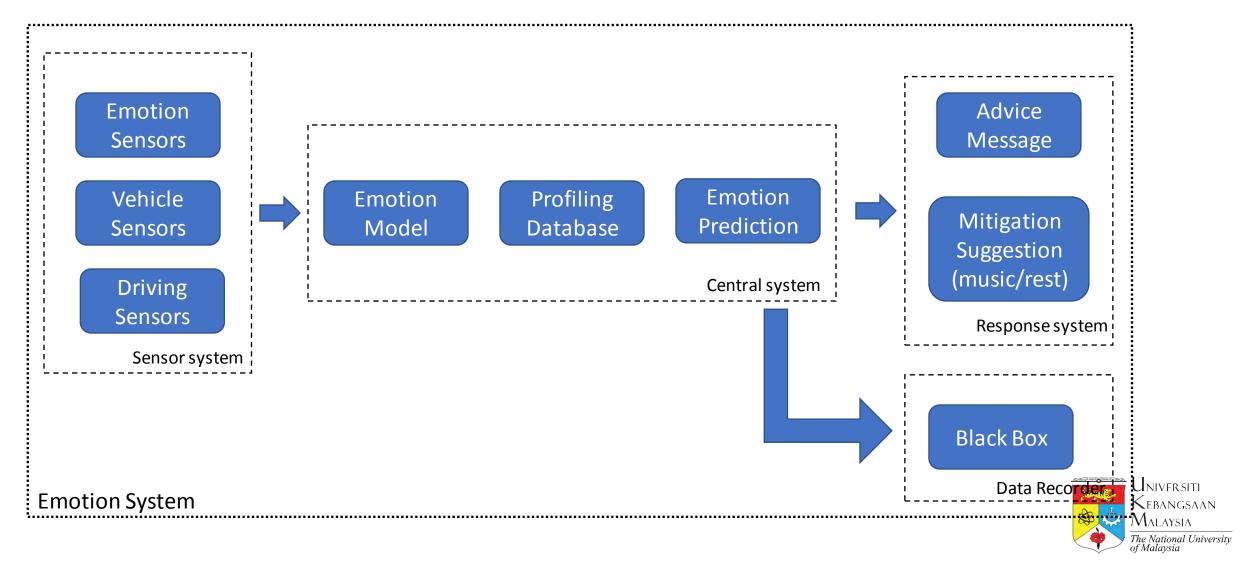
| IN SECOND | 25             | 40               | 25             | 95           | 25             | 129                | 180         |
|-----------|----------------|------------------|----------------|--------------|----------------|--------------------|-------------|
| START     | Cooling Period | Anger            | Cooling Period | Anger        | Cooling Period | Anger              | Recovery    |
|           | Black Screen   | 8 Digital Images | Black Screen   | 1 Video Clip | Black Screen   | 1 Video Audio Clip | Eyes Closed |

Number of subjects: 69 (aged 20-35)


Validation: Survey answered by subjects

Recognition accuracy(with ECG & SCR signals): 90%




# Laboratory proof of concept

Example of emotion pattern - SCR





# Proposed Prototype System block



Proposed Prototype **Emotion Sensor 1** (SCR, Heart beat, skin temperature) Emotion sensor 2 (ECG) Vehicle Sensors -Acc/Deceleration -Braking behaviour **Emotion System & Data** Recording (Black Box) Universiti Kebangsaan Malaysia The National University of Malaysia



## Project Example

# Smart and Sustainable Mobility System Towards Carbon Neutrality Campus

#### PROBLEM STATEMENTS













**PRODUCTIVITY** 

**CARBON EMISSION** 

**OVERHEAD** 

**WELLBEING** 









**INEFFICIENT WASTE MANAGEMENT** 

**WASTAGE OF RESOURCES** 







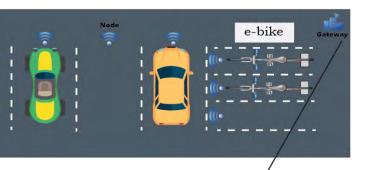


**HABITS** 

LACK OF HOLISTIC DESIGN

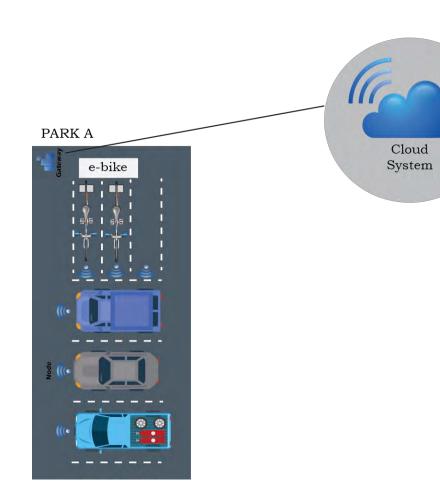
## Smart and Sustainable Mobility System Towards Carbon Neutrality Campus




#### Main Objective

 To reduce 40% carbon reduction in the campus through smart parking and transportation system

#### Objective


- To develop a real-time parking information system with inter-connectivity transport
- To develop internet of bike solution for e-bike connectivity in the campus
- To achieve 40% reduction of Carbon Emission in the Campus
- To evaluate social readiness in adapting smart and sustainable living

#### PARK B











## Project Components – e-bike



e-bike health information

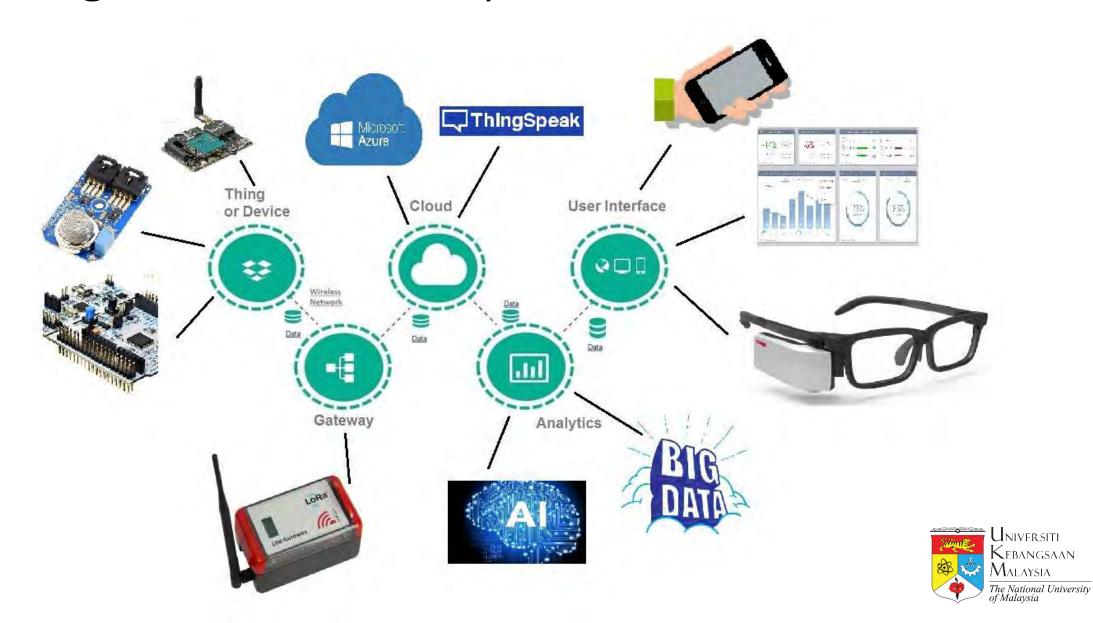
Ultracapacitor for fast charging

Less dependent on charging station

Alternative source of energy



Location perimeter restriction


Locking system

e-bike sharing/booking system

Smart power management

## **Final Remarks**

## Technological solution for your research



## Your solution partners

- Need help to Integrate technology?
- Internet of Things solution?
- Proposal writing?
- Technology development?
- Technology advice?
- Knowledge transfer?
- Cloud based service?
- Sensors development?
- Smartphone application development? Wearable device?







"It is not the strongest of the species that survives

Nor the most intelligent that survives

It is

the one that is most adaptable to change"

## Thank You

Sawal Hamid Md Ali
Department of Electrical, Electronic and Systems Engineering
Faculty of Engineering and Built Envrionment
University Kebangsaan Malaysia

sawal@ukm.edu.my +6012-2592475



## Intelligent Mechatronics

#### Dr. SRANG Sarot,

Head of Dynamics and Controls Laboratory,
Head Research Unit of Mechatronics and Information Technology



#### Intelligent Mechatronics?

#### **Intelligent Mechatronics**



#### Mechatronics



#### **Artificial Intelligence**

- Automation
- Robotics
- Control System
- System Design
- System Modeling

- Search and Optimization
- Machine Learning
- Deep Learning and Reenforcement Learning
- Identification & Estimation

## Projects on Mechatronic Systems

## Play all videos

**AWARDS** 

## SCARA Robot

- Moving or shorting parts
- Drilling holes
- Cutting metal
- Assembly



## 4DOF Robot Manipulator

#### Simulation result (see animation)

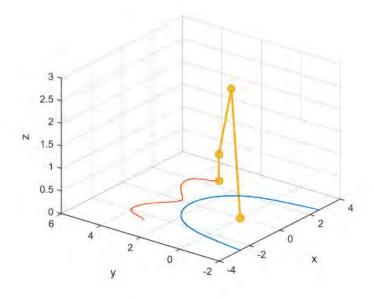
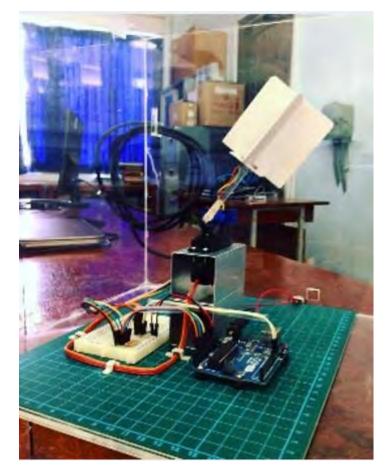




Figure: A snapshot of trajectory tracking

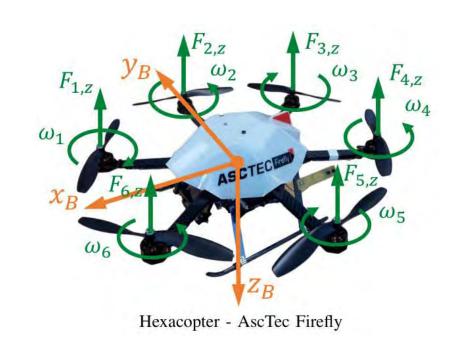


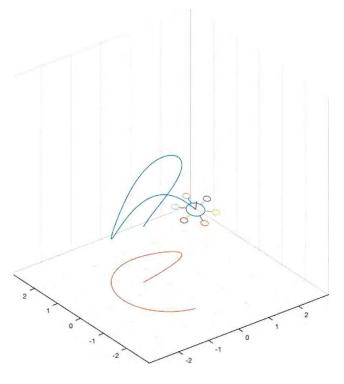

## 4DOF Robot Manipulator (cont.)

- Moving or shorting parts
- Drilling
- Metal cutting
- Assembly



### Dual Axis Solar Tracker


- Increasing solar energy collection
- Object tracking

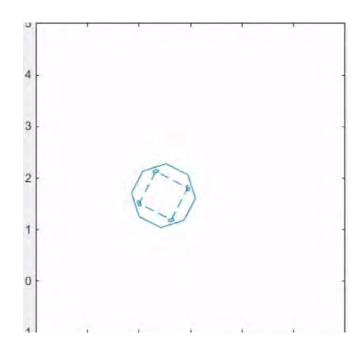



**Apparatus** 

## Drones: hexacopter

- Farm monitoring
- Surveillance
- Transporting goods
- etc...






Animation

## Mobile Robot using Omni Wheel

#### Used for

 Transporting and arranging goods in warehouse



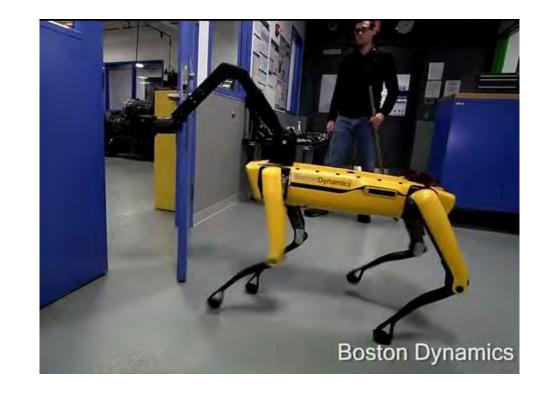




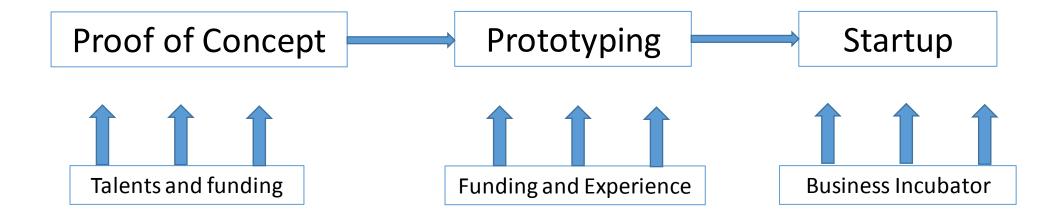


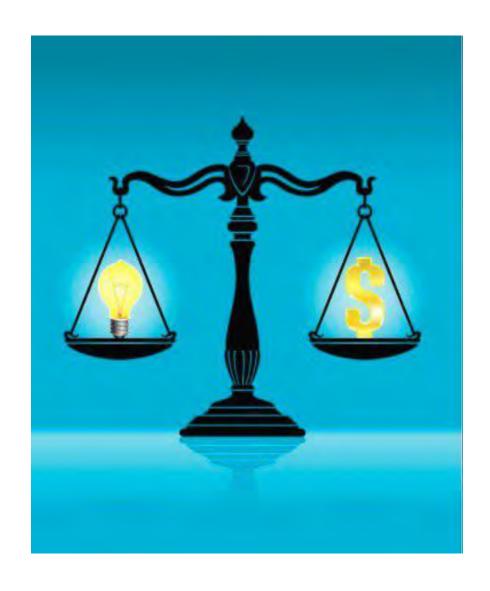
#### Interest for future research

- 5-DOF and 6-DOF Robot Manipulator (for multipurpose use)
- 7-DOF Robot Manipulator (like human arm)
- 4 legs and Biped Robot (walking robots)
- Integrating AI with robot


## Where we want to go?

**Examples of Intelligence Mechatronic Products** 


Self driving car




Spot mini (pet robot)



### From Research to Business





Thank you!



#### **Building AI applications from Cambodia**

Prepared for Cambodia Development Resource Institute
Phnom Penh



## My name is Andries De Vos

## CEO of www.slash.co

## /slash

www.slash.co

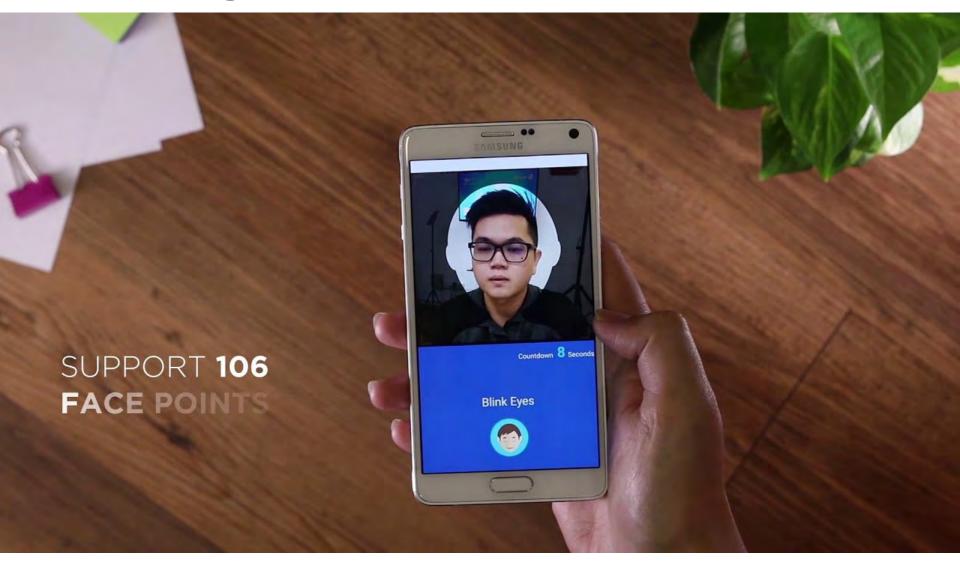


We help clients
We build startups

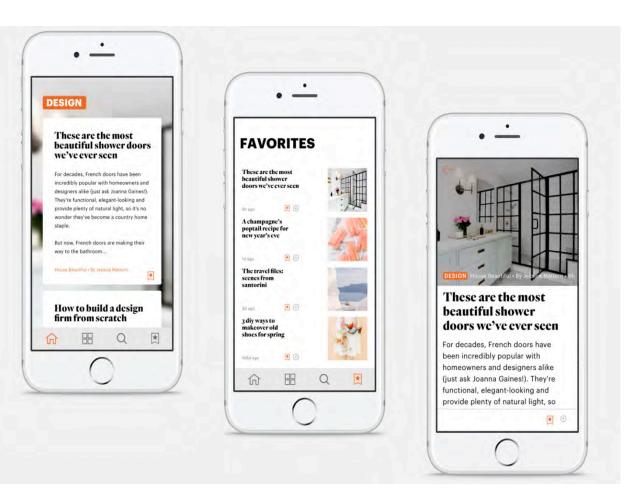


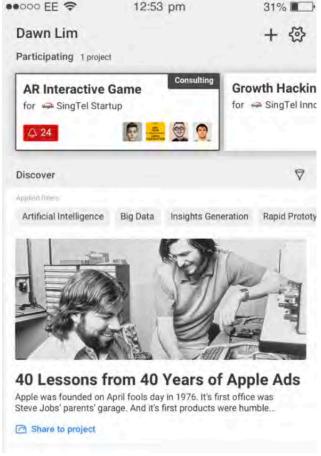





Researchers

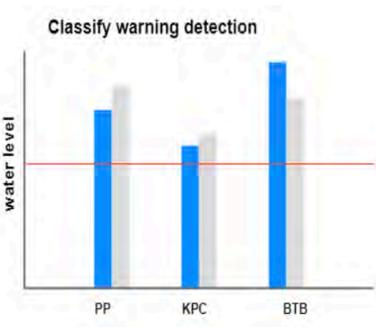



Geeks / Hackers


# PART 1 Building Al Applications from Cambodia

## Identity >> Match




## **News >> Categorize**





## Flood >> Predict





## Fraud >> Detect



## City >> Management



## **Chatbot** >> Khmer



# PART 2 Developing Al Talent in Cambodia

#### 2 challenges to start with Al

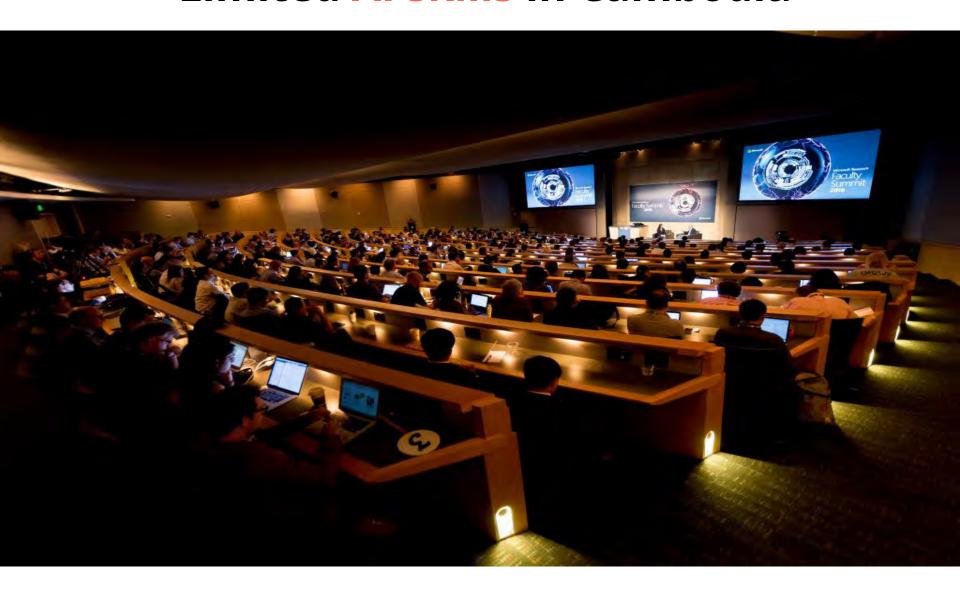
#### Access to Data



#### Access to Talent






#### Cambodia is still a paper society



#### **Cambodia needs Data Strategies**



#### Limited Al skills in Cambodia



### www.cambodia.ai

17



#### Al Master course



### Al in Cambodia = embryotic

# But we are optimistic about Al Talent in Cambodia

# Do you need a PhD in ML?

Not for applied AI.

# Soon, applied AI will be less about research and PhDs

and more about Product Engineering and Data

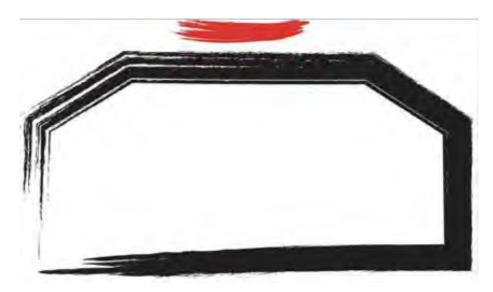
#### Average AI engineer with a lot of data

#### IS BETTER THAN

top AI engineer with little data

# access to opportunities

## /slash


We will allocate

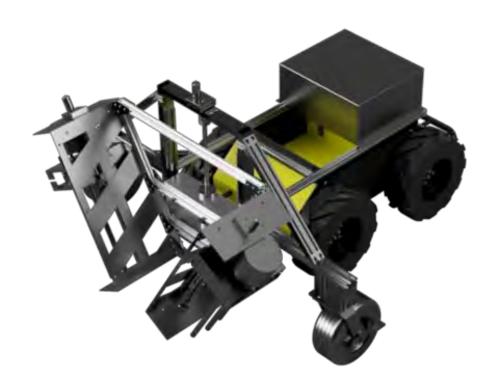
Al engineers

for Cambodian market

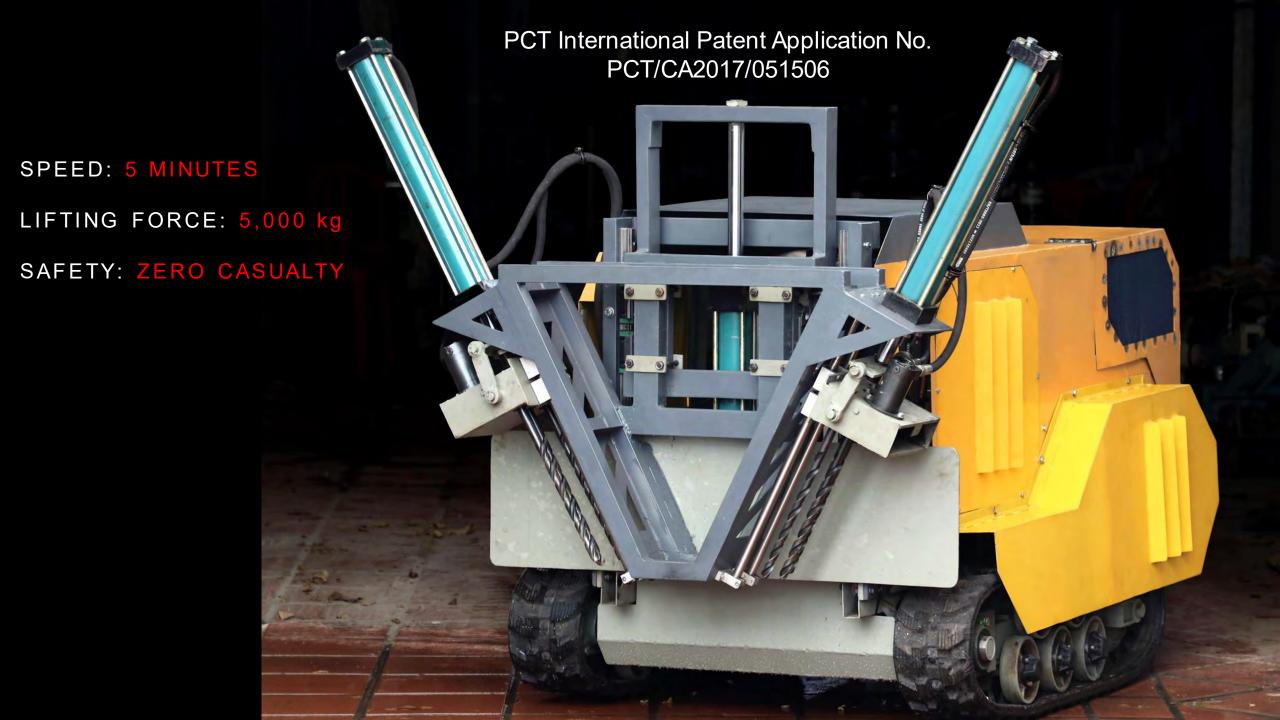
Contact us ai@slash.co



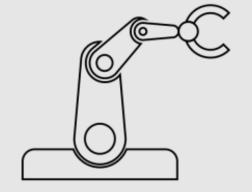



**Demine Robotics** 






Retrieve Detect Destroy










#### UNIQUENESS



#### ROBOTIC EXCAVATION

SMALL, STRONG, SMART

MACHINE EFFICIENCY

MACHINE SENSITIVITY

DATA COLLECTION



**CHHEM Siriwat** 

## THE AUGEMENTED ERA

"In this new era, your natural human capabilities are going to be augmented by computational systems that help you think, robotic systems that help you make, and a digital nervous system that connects you to the world far beyond your natural senses"

Maurice Conti, Chief Innovation Officer at Alpha

Problem #1: How do we design Aldriven curriculums to build and retain Al talent in Cambodia?

Problem #2: How do we maximize industrial productivity, while minimizing negative impacts on the existing workforce?

- 1. Bots take human jobs
- 2. Humans do not have jobs anymore
- 3. Humans do not have money anymore
- 4. Humans do not buy products anymore
- 5. Bots no longer have a job to perform, because they have no products humans will buy
- 6. Bots are no longer produced, because there is no more demand for them
- 7. Bots no longer exist
- 8. Humans go back to physical labor
- 9. Humans begin to make bots again
- 10. Repeat steps 1-9

## AI VS. EI (EMOTIONAL)





# STAY HUMAN!

#### 1st Annual Forum

#### Al-Cambodia

#### "Human Intelligence in the Augmented Era"

Innovative platform for scholars and entrepreneurs to exchange ideas, creating opportunities for collaboration

#### **Expected Output:**

- 1) Explore Al landscape of Cambodia
- 2) Examine roles of digital technology in society
  - 3) Foster industry-university linkages

#### **Conveners**

Dr Chhem Rethy – Executive Director, CDRI
Dr Hul Seingheng – Director of Research and Innovation Center, ITC

#### **Organizing Committee**

Dr Khieng Sothy – Senior Research Fellow, CDRI

Dr Liv Yi – Researcher Lecturer, ITC

Dr Srang Sarot – Head of Mechatronics Research Unit, ITC

Coordinator: Mr Chhem Siriwat - Intern, CDRI Email: siriwatwchhem@gmail.com

**NOV 2018** 

8th

Raintree - The Canopy299 Preah Ang Duong St 110,Phnom Penh

7:30 AM - 12:00 PM

## 1st Annual Forum Al-Cambodia

"Human Intelligence in the Augmented Era"

#### **Agenda**

7:30 - 8:00 Registration

Opening Remarks by Dr Chhem Rethy 8:00 - 8:10 Opening Remarks by Dr Hul Seingheng 8:10 - 8:20



**Scholar Presentations** 

8:20-8:30 Dr Sawal Hamid Md Ali, Associate Professor,

Universiti Kebangsaan Malaysia

"Disruptive Technology Shaping Our Future"

8:30-8:40 Dr Srang Sarot, Head of Mechatronics Research Unit,

Institute of Technology of Cambodia

"Intelligent Mechatronics"



**Entrepreneur Presentations** 

8:40-8:50 Mr De Vos Andries, CEO, Slash Foundry

"Building AI Applications From Cambodia"

8:50-9:00 Mr Yim Richard, CEO, Demine Robotics

"Landmines, Bombs and Robotics"

Panel Discussion (All speakers)

Moderators: Dr Chhem Rethy & Dr Hul Seingheng 9:00-10:00

10:00-10:30 Networking Break

**Networking Activity "Social Cafe"** 10:30-11:30

11:30-11:45 Closing Remarks by Mr Chhem Siriwat

11:45 - 12:00 Networking



Networking Activity: "Social Cafe"

Problem #1: How do we design Al-driven curriculums to build and

retain talent in Cambodia?

Problem #2: How do we maximize industrial productivity, while minimizing negative impacts on the existing workforce?







#### List of Participants

| No | Name                 | Affiliation                             |
|----|----------------------|-----------------------------------------|
| 1  | Ian Findlay          | University of Puthisastra               |
| 2  | Sawal Hamid Md Ali   | Universiti Kebangsaan Malaysia          |
| 3  | Sarot Srang          | Institute of Technology of Cambodia     |
| 4  | Yi Liv               | Institute of Technology of Cambodia     |
| 6  | Pheakdey Nguonphan   | Royal University of Phnom Penh          |
| 7  | Sovila Srun          | Royal University of Phnom Penh          |
| 8  | Angkeara Bong        | Cambodia Development Resource Institute |
|    | Y                    |                                         |
| 9  | Neat Ouk             | Biz Solution                            |
| 10 | Sereyvath Hor        | WeAlliance                              |
| 11 | Minea Kim            | WeAlliance                              |
| 13 | Piseth Sok           | G Gear                                  |
| 14 | Zoe Ng               | Raintree Development                    |
| 15 | Rithy Thul           | SmallWorld Venture                      |
| 17 | Leng Kang            | ISI Group                               |
| 18 | Sen Kang             | Fuxin Steel Buildings                   |
| 21 | Trevor Sworn         | British Chamber of Commerce             |
|    | Charles Esterhoy III | Worldbridge Homes                       |
| _  | Richard Yim          | Demine Robotics                         |
|    | Mike Kang            | Mlab Cambodia                           |
|    | Kai Park             | YYY                                     |
|    | Sopheakmongkol Sok   | Codingate                               |
| 27 | De Vos Andries       | Slash Foundry                           |
|    | Vuthy Monirath       | Taiwa Seiki Corporation                 |
|    | Cham Nou Jimmy       | PNN TV                                  |
|    | Theang Sothy         | Institute of Technology of Cambodia     |
|    | Ty Bunly             | Institute of Technology of Cambodia     |
| 38 | Chhean Rotanak       | Institute of Technology of Cambodia     |
|    | Vivoria Ngo Phat     | Outlook Tech & Biz                      |
|    | Hul Seingheng        | Institute of Technology of Cambodia     |
|    | Ath Sopagna          | Institute of Technology of Cambodia     |
|    | Lay Khun Sonita      | Codingate                               |
| 43 | Kamaroudin Sos       | University of Puthisastra               |

| No | Name               | Affiliation                             |
|----|--------------------|-----------------------------------------|
| 1  | You Saokeo Khantey | Cambodia Development Resource Institute |
| 2  | Oum Chantha        | Cambodia Development Resource Institute |
| 3  | Bun Phoury         | Cambodia Development Resource Institute |
| 4  | Leng Phirom        | Cambodia Development Resource Institute |
| 5  | Run Savinn         | Cambodia Development Resource Institute |
| 6  | Sen Sina           | Cambodia Development Resource Institute |
| 7  | Men Chanthida      | Cambodia Development Resource Institute |
| 8  | Chhem Rethy        | Cambodia Development Resource Institute |
| 9  | Chhem Siriwat      |                                         |
| 11 | Lim Seakleng       | Cambodia Development Resource Institute |
| 12 | Ravy Sophearoth    | Cambodia Development Resource Institute |



For any inquiries, please contact Mr. Chhem Siriwat at <a href="mailto:siriwatwchhem@gmail.com">siriwatwchhem@gmail.com</a>.

To see the forum photos: <a href="https://drive.google.com/drive/folders/1RIkQviImXUWc88C1OvANeyIqB9s3pQUD">https://drive.google.com/drive/folders/1RIkQviImXUWc88C1OvANeyIqB9s3pQUD</a>

#### Thank you,

See you at the 2<sup>nd</sup> Annual AI-Cambodia Forum!