1. Park, S. M., Yu, X., Chum, P., Lee, W. Y., & Sim, K. B. (2017). Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface. Optik, 129, 163–171. https://doi.org/10.1016/j.ijleo.2016.10.047
2. Yu, X., Chum, P., & Sim, K. B. (2014). Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system. Optik, 125(3), 1498–1502. https://doi.org/10.1016/j.ijleo.2013.09.013
3. Pharino, C. (2015). A Comparison Study for an Optimal Common Spatial Pattern Algorithm for EEG Signal Classification applicable to BCI Systems. 8TH AUN/SEED-NET INT’L CONFERENCE ON EEE 2014, 1–14.
4. Yu, X., Park, S. M., Ko, K.-E., Chum, P., & Sim, K. (2013). A study on STFT Feature Extraction of Motor Imagery Brain-Computer Interface. Proceedings of KIIS Spring Conference, 23(1), 8726.
5. Pharino Chum, Park, S.-M., & Kwang-Eun Ko and Kwee-Bo Sim. (2013). VCSP Method for EEG Feature Extraction of Motor Imagery Brain-Computer Interface. Proceedings of KIIS Spring Conference, 23(1), 115–116.
6. Yu, X., Park, S., Ko, K., Pharino, C., & Sim, K. (2012). Discriminative Power Band Feature Selection using PCA for Motor Imagery Classification in EEG-based BCI System. Proceedings of KIIS Fall Conference, 37–38.